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Abstract

Current tracking and adaptive optics techniques cannot compensate for fast-
moving extended objects, which is important for ground-based telescopes providing
space situational awareness. To fill this need, a vector-projection maximum-likelihood
wave-front sensing algorithm development and testing follows for this application. A
derivation and simplification of the Cramer-Rao Lower Bound for wave-front sensing
using a laser guide star bounds the performance of these systems and guides
implementation of a vastly optimized maximum-likelihood search algorithm. A complete
analysis of the bias, mean square error, and variance of the algorithm demonstrates
exceptional performance of the new sensor. A proof of concept implementation shows
feasibility of deployment in modern adaptive optics systems. The vector-projection
maximume-likelihood sensor satisfies the need for tracking and wave-front sensing of

extended objects using current adaptive optics hardware designs.

v
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One More Roll

We toast our faithful comrades now fallen from the sky
And gently caught by God’s own hand to be with him on high.
To dwell among the soaring clouds they knew so well before
From dawn patrol and victory roll at heaven’s very door.
And as we fly among them there we re sure to hear their plea
“Take care, my friend, watch your six, and do one more roll... just for me.”

Gerald (Jerry) Coffee, Captain, USN (Ret.)
Hanoi, 1968
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MULTI-DIMENSIONAL WAVE FRONT SENSING ALGORITHMS FOR
EMBEDDED TRACKING AND ADAPTIVE OPTICS APPLICATIONS

I. Introduction

Atmospheric turbulence affects clarity of anything in space viewed through large
telescopes. Machines that perform optical tracking of moving targets or provide high-
resolution imaging must correct for turbulence effects by detecting the distorted wave-
front caused by turbulence to prevent loss of tracking ability or image corruption [16].
The capability to detect distortion in the wave-front, or relative position changes of an
image, is often embedded or built into the wave-front sensor and processing algorithms
as a part of the adaptive optics system [16]. Modern adaptive optics systems allow for
wave-front correction with only guide stars and small, extended sources, sometimes
requiring post-processing of gathered data [12]. A new maximum-likelihood wave-front
sensing algorithm embedded in proven adaptive optics designs could enhance detection
for non-ideal conditions and real-time operations [5]. What and where atmospheric
turbulence is, how adaptive optics attempt to overcome the effects of this turbulence, and
why these optics systems need improvement all become clear in the following sections.
1.1. Background and Motivation

1.1.1. The Effects of Atmospheric Turbulence

Many factors on earth, such as natural processes and terrain features, affect

weather significantly; however, the main driver of turbulence is the sun’s uneven heating

www.manaraa.com



of the earth’s surface. The uneven heating causes convection currents and wind
spawning circular currents, eddies, which trap varying temperatures throughout the
atmosphere causing variations of the index of refraction thereby distorting the wave-
front. Figure 1 shows the first two major layers, the troposphere and stratosphere,
containing 99.9 % of the earth’s atmosphere, and whose turbulence is responsible for the
majority of light distortions [13]. The figure also indicates an average temperature
gradient; a few realistic sample temperature gradients as seen through different columns
of air; and other sources of turbulence such as shearing winds, terrain, and natural
processes feeding convection. The results of these sources of turbulence can combine to

distort a wave-front as it passes through different temperature gradients in the earth’s

atmosphere.
Temperature (°F)
-112 -76 -40 4 32 68 104
: 37.3
_ _ _ Mesosphere
B0 e SR QPRYSEL 3
: : : 7 Ozone E.ayer
E s
D A L e 4249 &
7] h)
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Figure 1. Temperature Gradients and Turbulence Sources in the Atmosphere [13]
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A clearer view of how a wave-front distorts and how the wave-
front initially forms is available in Figure 2. A point source, or a
distant star, emits light, which travels outward from the star much as
ripples travel outward from a pebble thrown in a pond. When these
“waves” are far away from the source, they appear as a straight line,
forming a wave-front. Researchers often model the propagating waves
as a two-dimensional Fourier Transform. Much like taking the Fourier
Transform of a single point in time results in a straight line in the
frequency domain, a point source in space transforms to a plane wave
related to spatial frequency rather than temporal frequency [8]. The

wave-front does not distort much as it passes through the stratosphere,

as temperature variations seldom occur there; however, the troposphere

severely distorts the wave-front due to the numerous opportunities for
eddies to form and trap temperature variations. The result is a
corrupted wave-front that, when focused onto an imaging device
produces a blurry and distorted image bearing little resemblance to the
original object.

In addition to using phase screens to model the temperature
variations and the relative refractive index changes directly at different

altitudes, researchers use Zernike polynomials, or “Zernikes”, to

Guide Star

Wave-Front

gg@ <> Qouo[NQIny,
ouydsoreng

ropospheric
oC
&

Ce

!

Figure 2.
Distorting of
Wave-Front

Moving

Through
Atmosphere

[12]

characterize the distortions in the wave-front itself [16]. As opposed to a rectangular

based set of polynomials, the Zernike polynomials describe a set of circular-based, two-

dimensional functions corresponding to the circular opening in a telescope or other
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imaging device [16, 22]. These models are crucial to correcting the wave-front in an
Adaptive Optics (AO) system.

1.1.2. Adaptive Optics Solutions

Although there are many applications for adaptive optics in modern imaging
systems, the basic structure as shown in Figure 3 for a general large telescope system

remains relatively constant across the applications [16].

Light From
Telescope

R

Adaptive
Mirror

Distorted
Wavefront

Control Corrected
System Wavefront

High-resolution
Camera
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A simple trace through the system reveals that light enters through the telescope lens with
a distorted wave-front, and then reflects from an adaptive mirror, a mirror that can
deform using mechanical actuators, which is initially flat as there is no information to
correct the wave-front. The light then continues to a fifty-fifty beam-splitter sending half
of the light into a lens, which focuses the light onto a high-resolution imaging device, and
the other half to the wave-front sensor. The first portion of the wave-front sensor both
optically and electrically detects measurable parameters of the wave-front, passing that
information to an algorithmic portion of the wave-front sensor to estimate the parameters
for later modeling. Since the wave-front sensor is the heart of this system, this thesis
concerns itself with the algorithmic portion of the wave-front sensor. These estimates
pass to the reconstructor in the control system, which builds a model of the wave-front
and then applies that information to a known model for the adaptive mirror to attempt
wave-front correction. If the wave-front has a lag or dip in it causing the light to arrive
later than expected, the mirror must have a corresponding bump to accelerate the light
back to its appropriate phase to compensate for the distortion. Once an initial estimate
corrects the wave-front, additional wave-front sensing refines the current estimates and
detects further changes, producing higher quality results for future images.

1.1.3. Problems and Need for Improvement in Wave-Front Sensing

The applications for higher quality imaging span the gamut, from ground-based
and space-based telescopes to military applications such as the Airborne Laser and even
medical services such as measuring aberrations, or deformities, in an eye. These
applications drive the need for better quality imaging and improvements in wave-front

sensing.
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As with any scientific research, improvements require a metric by which to
measure results and draw conclusions. To this end, knowing the structure for a Cramer-
Rao lower bound (CRLB) would provide, independent of the estimation technique, an
analytical method to judge the efficacy of current and proposed wave-front sensing
algorithms. Once known, the Cramer-Rao lower bound can also guide research for
improving current estimation techniques as well as developing new estimation
approaches to manage more complex imaging scenarios.

A complex situation of interest is imaging of extended objects, or light sources
that do not conform to the definition of a point source, such as a satellite in orbit, the
surface roughness of the sun, a scud missile, or even a truck on a highway. Tracking a
satellite in orbit allows for space situational awareness, or imaging of foreign assets,
without placing costly assets in space; however, it requires wave-front updates for this
extended object, the satellite, at an incredible rate of 1,000 Hz or greater due to the speed
in which the satellite moves. A complication to the satellite-tracking scenario stems from
the typical optical tracking system, which causes the image to fill the field of view and
allows new information to enter the scene while tracking, defeating current fast-acting
sensors. The surface intensity variation, or roughness, of the sun is a unique problem in
that the image gathered has extremely low-contrast features for tracking or correlation,
disabling most modern wave-front sensors; but imaging of the sun is necessary to predict
communication outages and solar weather in general. The scud missile, truck, and other
daytime AO applications represent a class of objects whose backgrounds, like the sun,
are not black reducing the contrast, and require rapid wave-front updates for the dynamic

turbulence between the object and imaging device. Imaging extended objects, although
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merely a collection of point sources with spatial reference to each other, is not the only
type of imaging that current wave-front sensors can have poor performance.

Occasionally, atmospheric turbulence results in a tip-tilt, represented by Zernike
polynomials two and three, beyond the physically measurable range of the sensor causing
an unknown in the collection of estimated parameters and preventing the reconstructor
from modeling the wave-front. This unknown occurs when the tip or tilt is so great that
the majority of the image moves off the detector leaving the algorithm a small amount of
information to work with. Modern sensors are not capable of controlling such a situation,
and the entire adaptive optics system suffers when a single sensor cannot acquire an
accurate estimate for the wave-front.

Although the optical and electrical properties of current sensors potentially
support the previously mentioned improvements, the algorithms currently in use do not;
therefore, an investigation of a vector-projection, maximum-likelihood-correlating wave-
front sensor guided by Cramer-Rao lower bounds and simulation experiments will
proceed.

1.2. Summary of Current Techniques

Several factors limit the performance of current adaptive optics techniques
preventing the ability to track or perform wave-front sensing for fast-moving, extended
objects, or low-contrast objects. The largest contributor to these limitations is the wave-
front sensor, which provides the necessary information for the adaptive optics system to
correct the wave-front deformities.

There are two main categories of wave-front sensors, low-order wave-front

sensors and advanced wave-front sensors, both of which are capable of detecting wave-
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front distortions. The advanced wave-front sensors typically produce better performance
through higher order computations and more complex algorithms; however, most cannot
image an extended object and none are capable of the tracking application as closed loop
speeds are currently very low [6]. Current low-order wave-front sensors provide slightly
lower imaging performance, but operate at up to 1000 Hz, allowing for tracking and other
fast-moving imaging applications [16]. These simpler estimation techniques include
numerous wave-front sensors; however, only the easily implemented and fast-operating
Shack-Hartmann and Short-Wavelength Adaptive Techniques (SWAT) wave-front
sensors are common today [16]. Both of these sensors use a centroid-based algorithm to
estimate tip and tilt, and this algorithm can have extremely poor performance when
attempting wave-front sensing or tracking on an extended object [16]. The simplicity of
the centroid algorithm suggests that a more complex and statistically based algorithm
could surpass these sensors in performance, possibly retaining the operating speed while
tracking or performing wave-front sensing on extended objects.

Research indicates the theoretical vector-projection maximum-likelihood wave-
front sensor can achieve the performance of a low-order wave-front sensor for tracking
and wave-front sensing of guide stars while providing suitable performance for imaging
extended objects [5]. This wave-front sensor uses the same hardware system as the
SWAT wave-front sensor; however, the algorithm is a maximum-likelihood estimation
technique, which provides correlation capability for an extended object while
maintaining performance for point sources [5]. Currently only limited simulated
statistical characterization of this sensor is available and the tracking application requires

a modern processor to implement this more complex algorithm [5].
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1.3. Contributions and Scope

It is the goal of this research to quantify the efficacy of a vector-projection,
maximum-likelihood-correlating wave-front sensor for tracking extended objects based
on a satellite application, as well as a couple wave-front sensing applications, through
three facets [5].

The first contribution is generalized model for the Cramer-Rao lower bound with
assumptions allowing for future applications provides the analytical basis for research.
The CRLB should be applicable to any type of wave-front sensor.

The second contribution is an algorithmic analysis to increase the temporal
performance of the new complex maximum-likelihood algorithm to allow simulations
that thoroughly characterize the noise-independent bias of the algorithm resulting in a
third contribution as well as the noise statistics of mean squared error (MSE) and
variance (VAR) for a fourth contribution. The variance directly compares to the Cramer-
Rao lower bound to reveal limitations in the algorithm. The search algorithm developed
in this phase contributes to other applications requiring a fast and complete algorithm to
perform the search of functions with special properties such as maximum-likelihood.

The fifth contribution is a proof of concept for a feasible method of developing
this algorithm for embedded hardware implementation and a complete plan for
implementation offers insight to researchers in the field looking for feasible solutions.
The third criterion is complete when a single working implementation emerges; however,

multiple revisions provide further utility.
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This three-faceted exploration secures a concrete approach to the research,
development, and implementation of a vector-projection, maximum-likelihood-
correlating wave-front sensor.

1.4. Approach/Methodology

The three-faceted investigation above, with the provided motivation, is a template
that guides the organization of both the research and this document. A thorough
investigation of current techniques with appropriate discussion of relevant subjects
provides the necessary foundation for research. This leads to development of the
tracking and wave-front sensing application environments for producing realistic
simulations and allowing accurate characterization of the new algorithm. Theoretical
analysis develops the CRLB for wave-front tilt estimates, which provides input for
development of a fast, compact, and complete search algorithm for discovering the peak
likelihood. From the validated algorithm extends a focused hardware implementation.
The results of extensive simulations provide the bias, mean squared error, and variance
statistics characterizing the algorithm for tracking and numerous wave-front sensing
applications. The research concludes with a synopsis and areas of further research,
allowing for future contributions to the body of knowledge regarding tracking and wave-

front sensing.
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1. Background

2.1. Current Wave-Front Sensing Limitations

Modern imaging of extended objects requires either a stable point source in the
field of view or complex optics and algorithms to detect the wave-front correctly across
the lens of the telescope. The extended source typically forces researchers, astronomers,
and field users to find or create a guide star close to the extended object they wish to
view. The applications mentioned previously, particularly imaging large objects or
tracking fast moving targets, are difficult or impossible to realize using nearby or
artificial guide stars. Wave-front sensing and tracking is possible due to the complex
system mentioned in the introduction; however, the key components are the wave-front
sensor and the algorithm to determine tip and tilt. The following describes the typical
tip-tilt only detectors and a few more complex wave-front detection methods, directly
compares and summarizes the features of each sensor, and finally presents areas of
potential research given this information.
2.2. Low Order Wave-Front Sensors

2.2.1. Shack-Hartmann Wave-Front Sensor

The most widely employed wave-front sensor uses the Hartmann test to estimate
the linear, lower order Zernikes, two and three, and currently has the best overall real-
time performance [16]. Both the hardware structure and the algorithm to gather offset, or
tip and tilt, information lead to a simple mathematical model stemming from the

elementary nature of the sensor as described below [17].
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Figure 4 illustrates a typical Shack-Hartmann sub-aperture array in one-
dimension and a single sub-aperture in Figure 5 indicates a linearly tilted wave-front and
the corresponding offset in two-dimensions when focused [16]. The sub-apertures must
be small enough to meet the Nyquist sampling criterion to ensure that the curved wave-
front is linear in the region measured by the sensor driving the overall number of sub-
apertures [8]. The Nyquist rule applies to any sub-aperture type system, as well as
another generalized rule that imposes a requirement of approximately one adaptive optics
channel, sub-aperture, per turbulence coherence radius ry as a minimum, independent of
the telescope size [14]. Larger numbers of sub-apertures implies smaller sizes; however,
this larger number of sensors can introduce more noise into the system and decrease

light, degrading overall system performance [5].

Incident Detector Wavefront e s
Optical Field Plane \
/
O/ xg
Single d
Subauaerturelv f
Lenslet Array
o]+
Figure 4. Wave-Front Sensor Array [16] Figure 5. Single Wave-Front Sensor

Element [16]
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These sub-apertures consist of a lenslet array, which focuses the light onto a charge
coupled device (CCD) array for the individual wave-front sensors (WFS) [16]. The CCD
readout, where the information collects, is the second opportunity for significant noise
injection before the wave-front algorithm begins processing.

The algorithm driving a Shack-Hartmann wave-front sensor is a simple two-
dimensional centroiding algorithm [17]. Each intensity readout multiplies a linear
position number, then average together, and finally the total power in the image divides
the result for the centroid in one-dimension and then repeats for the next dimension. This
operation takes a minimal amount of time allowing greater than 100 Hz operation, and
provides quality results for guide stars and moderately extended objects [12]. There is a
lower bound on error for shot noise, or quantization noise; however, it is somewhat
restrictive and only applies to the Shack-Hartmann wave-front sensor and guide stars
[16]. The simplistic nature of this algorithm lends itself to improvement in accuracy as
time permits such investigations.

One performance improvement for the Shack-Hartmann sensor came from
research at MIT Lincoln Laboratory; the short wavelength adaptive techniques wave-
front sensor, which splits the incoming light to two lenslet arrays and two CCDs oriented
at 90° to each other. The performance improvement stems from allowing the CCD to
gather all of the charge in the image into vector readout, or a projection, and then
performing a one-dimensional centroiding algorithm for each orientation [2]. Although
image projection allows for both faster readout and lower readout noise, it decreases the
brightness of the original image, decreasing the signal to noise ratio (SNR) making an

accurate estimate less likely.
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2.2.2. Shearing Interferometer

A more complex wave-front sensor not typically considered outside of academia
that strictly estimates Zernikes two and three is the lateral shearing interferometer [23].
Although the physical implementation of a single shearing interferometer can be simple,
the algorithm to retrieve a usable tip-tilt requires a high degree of effort, and the model
for the wave-front sensor system clearly indicates the non-mathematical foundation of the
apparatus and the amount of processing required to retrieve phase information [16].

The physical apparatus splits the incoming light several times encompassing the
entire wave-front of the sensor to perform filtering and polarization for different
measurement techniques [16]. Once split, the beam splits again before shearing in
orthogonal directions by a tunable amount, only to recombine with the non-sheared
version and create an interference pattern as shown in Figure 6 [23]. This pattern has a
direction relationship to the wave-front tilt, and a sinusoidal nature over time allowing

researchers to correct the wave-front in a reasonable time frame [16].
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Figure 6. Shearing Interferometer Final Stage Operation [16]
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Decoding the phase from this interference pattern takes many forms; however, all
algorithms lead to similar results with a modest time delay and correct operation for point
sources [16]. The limitation to point sources stems from the expectation of a plane wave
at the receiver. Without a point source, the interference pattern includes noise from the
shape of the extended object and corrupts the output waveform. The lateral shearing
interferometer is the most tunable wave-front sensor, but tuning is crucial to match the
Shack-Hartmann sensor under ideal conditions.

2.3. Advanced Wave-Front Sensors

2.3.1. Curvature Wave-Front Sensor

A promising new wave-front sensor is the curvature wave-front sensor.

Curvature sensing has additional requirements for the adaptive optics system by adding a
secondary deformable mirror [1]. The hardware for this system relies on the Shack-
Hartmann or other low-order wave-front sensing detectors; however, the algorithm
driving the higher order results, Zernikes four and above, takes the same information and
performs a superior analysis at an elevated processing cost [1]. The key for this method
is the requirement for an accurate tip-tilt sensor in order to perform correctly, thus
requiring the best low-order Zernike sensor/estimator possible.

Aside from the addition of a deformable mirror shown in Figure 7, the first mirror
corrects for tip-tilt and the second correct higher order Zernikes, the fundamental concept
of sampling the image changes for a curvature wave-front sensor [1]. Sampling of in
focus and out of focus images occurs simultaneously at a minimum of 1 kHz rate using a

special parabolic mirror as in Figure 8.
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The multi-phase sampling allows wave-front correction over the entire visible spectrum,
and provides the flexibility to operate at lower frequencies as well; however, like the
shearing interferometer it assumes a point source is the subject of the image [1]. The
complexity of this system forces the researcher to justify the modest performance gain
with the significant hassle required to install, setup, and maintain this system.

2.3.2. Phase Diversity Wave-Front Sensor

Possibly the simplest structure of all wave-front sensors appears in the phase
diversity wave-front sensor. This type of sensor concentrates on superior algorithms as it

is not capable of the basic autocorrelation algorithms generally used in wave-front
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reconstruction using the other wave-front sensors [3]. The required maximum-likelihood
techniques require tremendous processing power, as addressed on a smaller scale for the
theoretical sensor, and typically apply to offline de-convolution of an image rather than
real-time correction of wave-front aberrations [6].

A beam splitter and a second imaging device at a greater focal length is all the
additional hardware required for this sensor to estimate at least the first 21 Zernike
polynomials [3]. Once estimated, the coefficients of the Zernike polynomials allow for
de-convolution of the image with the atmosphere, allowing for imaging when guide stars
are not available [10]. This process takes an inordinate amount of time, and is not
capable of sustaining an adaptive optics system in real-time for fast-moving objects or
rapidly changing turbulence; however, enough information is available for post-
processing methods. Low contrast scenes are still difficult to image with this method as

the SNR decreases significantly.

telescope

beam splitter

focused image

defocused length
defocused image

Figure 9. Typical Phase Diversity Hardware Setup [3]
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2.4, Theoretical Maximum Likelihood WFS

A vector-projection maximum likelihood wave-front sensor builds upon the
design of the Shack-Hartmann and extends the SWAT wave-front sensor requiring no
major hardware changes from the SWAT design. This hardware setup provides the same
readout noise reduction as the SWAT sensor, while the algorithm used to detect tip and
tilt surpasses centroiding in photon noise rejection, particularly for extended objects, at a
cost of higher computation time [5].

The hardware portion of this sensor adds an additional beam splitter just before
the original Shack-Hartmann sensor exactly as the SWAT wave-front sensor does, with
the split beam feeding an identical, but rotated 90°, array of sub-apertures and CCD
elements. The CCD structures mirror the SWAT device as well by using vector readouts
of the images creating projections of the original image in two-dimensions. The
algorithm then uses these projections independently for the autocorrelation related
maximum likelihood estimation of tip and tilt [5]. Characterization for the setup and
some statistics already exist from a previous work; therefore, extension into the tracking
and characterization for wave-front sensing should be simpler [5].

2.5. Comparison and Summary

Limitations in current adaptive optics technologies constrain the ability to
perform ad-hoc imaging of fast-moving, extended, or low-contrast objects. These
limitations generally stem from the wave-front sensor, as it is the key component in an
adaptive optics system. Table 1 shows, using a scale of Excellent-Good-Marginal-Poor,
Shack-Hartmann and curvature wave-front sensors have good performance for various

object types and a respectable response time, easily allowing for common use today [1, 5,
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16, 17]. The lateral shearing interferometer and phase diversity wave-front sensors have

other advantages as seen in Table 2 that outweigh the detriments of such complex

systems [3, 16, 23]. The theoretical maximum likelihood sensor provides excellent

image tracking capabilities while maintaining a low complexity and high response time

making it an ideal candidate for further research [5].

Table 1. Performance Comparison for Common Wave-Front Sensors

WFS Performance on Given Object Speed Complexity
Point Extended Low Hardware | Algorithm
Contrast
Shack-Hartmann | Excellent Marginal Assumed | Excellent | Low Low
Poor
Shearing Good Poor Poor Good Medium Medium
Interferometer
Curvature Excellent Marginal Poor Marginal | Medium High
Phase Excellent Excellent Good Poor Low Very High
Diversity
Maximum Theoretically Theoretically | Assumed | Good Low Medium
Likelihood Excellent Good Marginal

Table 2. Additional Known Advantages and Disadvantages of Wave-Front Sensors

WEFS Other Advantages Other Disadvantages
Shack-Hartmann Requires Small, High Contrast
Object for Good Estimation
Shearing Very Adaptable to Current Requires Extensive Tuning
Interferometer Environment
Curvature Requires Tip-Tilt Estimation
First for Edges of Wave-Front
Phase Diversity Allows De-Convolution of Image Only Offline Operation
Maximum Possible Off-Edge Lock Capability; | Requires Estimate of the True
Likelihood Multiple SW Realizations Possible | Image
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2.6. Possible Areas of Investigation

Before research beings to attempt a performance improvement, a benchmark for
comparison is always a good idea. To this end, a Cramer-Rao lower bound for wave-
front sensing should establish a solid baseline. Additional applications for the maximum
likelihood wave-front sensor are of interest, to include integration with phase diversity
algorithms, near and off-edge performance of guide stars, and multi-spectral maximum
likelihood analysis. To make a feasible sensor, the algorithm must be capable of real-
time operations within a closed-loop system requiring algorithmic analysis and
decomposition. Taking this decomposition of implementable algorithms it should be

possible to perform hardware simulations and analysis.
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I11. Modeling

Investigating new topics requires thorough modeling of the known environment
to guide the research and provide adequate testing of results from these analyses and
simulations. This chapter of the thesis defines the programming and simulation software,
the methods to generate realistic data within these programming environments, and the
relevant facts surrounding these modeling techniques. Verification and validation for
expected performance of investigation results requires not only the modeling capability
and understanding but also development platforms for software and hardware simulations
and fabrication.

The majority of software validation and simulation uses MATLAB version
7.0.4.365 (R14) Service Pack 2 with the Signal Processing Toolbox, executing both the
simulated environment and sensor model under test. However, some algebraic,
differential, and statistical validation uses Mathematica version 5.2 for symbolic
manipulation and verification of complex formulas. Simulated hardware verification
requires a different development environment and uses Altera’s Quartus II version 5.1
Build 176 for both hardware modeling and testbench simulation. These development
platforms provide a broad yet firm foundation for design and assessment of image and
signal processing technologies through both software and hardware elaboration and

simulation capabilities.
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The objective in modeling images is to provide the most realistic and best-case
scenarios for sensor characterization, while providing the sensors with enough
information to exceed modern performance expectations.

3.1. Image Modeling Parameters

As with any modeling, the parameters for modeling are often more important than
the modeling itself, and the parameters controlling image creation listed in Table 3 are no
exception.

3.1.1. Wavelength

Since atmospherically induced optical tilt bends different wavelengths of light
much like a prism, ideally a sensor should receive only one wavelength to perform
estimation as an image further distorts when combining different wavelengths. To avoid
further distortion, all created images include the assumption that the wavelength is quasi-
monochromatic, including a range of 0.05 pm of wavelengths, and fixed both spatially

and temporally.

Table 3. Image Modeling Parameters and Simulated Ranges

Parameter Description Simulated Range

Wavelength | Wavelength of Light Received Quasi-Monochromatic and Fixed

Sampling Nyquist or Higher Sampling Rate | 1 to 2 times Nyquist

Image Size | Size in Pixels of Captured Image | 8 to 64 Pixels Square

Light Level | Sum Total of Light at Receiver Guide Star: 100 to 1,000 Photons
Extended Object: 6,000-20,000 Photons

Background | Additive Stray Light in Receiver | 0 to 1 Photon per Pixel
Intensity
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While the useful information contained in other wavelengths should produce similar
characteristic results, the tilt information from one additional wavelength will further
correct wave-front error by characterizing the true path of light through the atmosphere,
an effect not modeled or investigated. Only genuine images with real data will define the
actual frequency of light used for modeling as sampling requirements for real images
require this information.

3.1.2. Sampling

Once the light passes through the atmosphere and enters the telescope, it is
necessary to sample the point spread function (PSF) appropriately according to the
Nyquist sampling theorem to avoid aliasing of frequency content in the image [16].
Starting from the cutoff frequency of the optical transfer function (OTF) of the lens
shown in Equation 1, Nyquist sampling chooses the minimum sampling frequency to be

at least twice this cutoff frequency [16].

fo= (1)

N

D
A

f,22-f, =2 @)

where
f. = Telescope Optic Cutoff Frequency (radians™)
/. = Sampling Frequency (radians™)
D = Lens Diameter (meters)

A = Light Wavelength (meters)
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Given that the wavelength of light remains constant for this modeling, any adjustment
required for Nyquist sampling will occur either by adjusting the sampling rate or the lens
diameter. For an image at a fixed distance from the telescope, Equation 2 combines with
Equation 3, which assumes the small angle approximation, and then controls the

wavelength and aperture diameter based on the actual angular coverage of a pixel.

o= ~ = f% 3)
where

o = Angular Coverage of Pixel (radians)

dx = Size of Pixel on Object (meters)

z = Distance to Object (meters)
Over-sampling has the added benefit of aiding an interpolator for better estimation
results, but it also decreases the light available to each pixel causing detrimental effects
explained in Section 3.5. Nyquist sampling theory does not address the resolution limits
between objects in the image; therefore, the Rayleigh, Dawes, or Sparrow criteria do not
contribute to modeling and completely ignored to provide an idealized characterization of
the sensors [15]. Since the sampling frequency is twice the cutoff frequency as
determined by the diffraction limited effect of a telescope opening, a shift of one Nyquist
pixel is analogous to a slope in the frequency domain of n radians, or one-half of one
wave of tilt, via the Fourier shift theorem [11].

3.1.3. Image Size

Determining the actual image size requires knowledge of the search area for

wave-front tilt as well as the particular requirements of a wave-front sensor, and in an
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effort to guide the search area, a quick derivation of the statistical nature of tilt follows.
As often used in a Monte Carlo simulation when generating a phase screen, or layer of
turbulence causing tilt at a set altitude, the Cholesky factorization of the Zernike
polynomials’ covariance matrix multiplies a vector of zero-mean, unit variance Gaussian
random variables to create a set of statistically accurate Zernike coefficients [16]. The
tilt therefore remains Gaussian and originates from the low order elements of the

covariance matrix, captured in Equation 4 for Zernikes two and three [9].

5
3
oo = 0.448(2J , {radiansz} 4)
"o

where

o,, = Variance of Tilt (radians®)

D = Diameter of Aperture (meters)

1o = Fried Parameter (meters)
This formula yields variances, and subsequently standard deviations, less than one when
compared to a wave of tilt, which is 2x radians, for either a large telescope or a small
turbulence coherence radius creating large values of D/ry, allowing for computation of a
search window. An image supporting searches of plus or minus four waves of tilt would
provide a worst case of no less than 99.99 percent possible tilt coverage, requiring a
search space of plus or minus eight pixels [9]. Prior temporal analysis explains this

derivation in further detail and indicates that in a closed loop system, as an adaptive

optics system provides, values of tilt beyond one to two standard deviations are
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exceedingly unlikely unless the adaptive optics system loses lock requiring a greater
search space [4].

Different sensors require various image sizes to allow for optimal performance,
and although telescopes often include four-by-four pixel images for Shack-Hartmann
sensors this image size severely limits the range of detection for tilt measurements, thus
the current most complex version of this sensor defines the lower bound of an eight-by-
eight pixel image as larger image sizes degrade read-out performance. The theoretical
Maximum Likelihood sensor relies on a minimum of twice the number of pixels to
correlate with compared to the desired search space for extended objects, and to achieve
this sixteen pixel search space, the theoretical sensor requires a minimum size of thirty-
two pixels. With the middle ground of image sizes fixed, the upper bound stems from a
forward-looking perspective with respect to greater turbulence and superior accuracy.
An important assumption as image sizes grow beyond approximately thirty-two by thirty-
two pixels is isoplanism of the observed wave-front, which may be true for a natural
guide star (NGS), is probably not accurate for a satellite in orbit, and most likely
incorrect for a laser guide star (LGS). It is also important to highlight that the
parameterization of image size, although somewhat dependent upon sampling, is
independent of light-level and background intensities.

3.1.4. Light-Level (Total Intensity)

Another parameterized variable in image creation is the total intensity of the
image, or light-level, which the telescope controls based on the object imaged, the
amount of light split through the beam splitter to the wave-front sensor, and the

integration time of the sensor. To avoid temporal distortions caused by quickly changing
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turbulence, a short integration time is desirable; and for modeling purposes, all images
assume an ideal integration time of 100 ps [16]. Adaptive optics entails obtaining light
levels ranging from ten to sixty percent of the total light received by the telescope, with
the least amount of light required being the most desirable as the light for wave-front
sensing detracts from that available to the primary sensor. To show the performance of
all sensors in acceptable light levels and to demonstrate significant trends as light-levels
increase or decrease, this modeling uses a modest search range near the lowest light-
levels commonly used. It is interesting to note that, as clarified in Section 3.5, when light
level decreases the effective signal-to-noise ratio also decreases making a correct
estimate of the tilt less likely. This is only one way that the contrast ratio, or ratio
between the highest and lowest intensities in the image, changes, modifying the
background intensity also changes this hidden parameter.

3.1.5. Background Intensity

The last considered parameter indicates the efficiency of the optical and electrical
components of an imaging system, and can significantly affect the results of certain
sensor models, which expect a black background to perform estimation. The background
light level typically cumulates from stray light in the imaging system as well as stray
electrons in the image capture device, causing a lower contrast ratio and subsequently a
lower SNR. A perfect imaging system could have a background light intensity of zero,
while a very poor system might aggregate an overwhelming background of one photon
per pixel or more for the light levels in the parameterization range. This background
effectively resides beneath the signal represented by an image, and can cause a smooth

function such as a Gaussian to change shape significantly.
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3.2. Image Creation

To avoid unknown effects in simulation, image creation requires explicit
knowledge of the characteristics of an image with nearly precise knowledge of the
statistics expected from turbulence effects on that image allowing for modeling validation
and reliable simulations.

3.2.1. Two-Dimensional Gaussian (Simulated Laser Guide Star)

The two-dimensional Gaussian represented by Equation 5 is possibly the simplest
image type to model, and genuinely represents the nature of an artificially generated laser
guide star, which can allow wave-front correction for extended objects. It is important to
note the assumption of independence and equality for the variance in both dimensions of
the Gaussian, which may not be correct for true hardware and atmospheric turbulence.
Additionally, there is an extra parameter C to adjust the light level of the image, which
simply scales the complete picture and does not modify the Gaussian in any other respect.
Figure 10 and Figure 11 illustrate the true form of this image without noise for a three-

dimensional view, projection images in both axes, and a two-dimensional representation.

- x2+yz)
i(x,y) = C(27r0'2) e 2 (5)

where
i = Representation of 2-D Gaussian Image (photons)
x, y = Pixel Locations in the Image (pixels, € Integers)
C = Total Intensity of Image (photons)
o = Standard Deviation (pixels, € Positive Reals)

Assuming o = g, = g, and the Two Dimensions are Independent

28

www.manaraa.com



2-D Gaussian (LGS) Image of 2-D Gaussian {(LGS)

1010 o —xProjectign
g 1 i ——y-Projection
g : N -
810 3
Q ""f’z"?‘;“:zs:‘::“‘\{“ :.-'-
IO PSR oo g
] : S S S e SRR ]
= F e ' X AR
2 0™ f///%”lgg:ﬁ%"%Q‘:‘O o8t ‘:‘ .
o A RS %Q“
-10 -10
Position {pixels} Position {pixels} 15 10 5 0 5 10 15

Position {pixels}
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Aside from representing a smooth function from which over-sampling and interpolation
are simple, a further benefit of using this model is the ease of creating projections of the
image discussed later in Sub-Section 3.2.3. The Gaussian has an added advantage in that
it is also a close representation of a diffraction limited natural guide star once the image
shape adjusts to reflect the effects of noise, in which case a standard deviation of two
accurately represents both the NGS and LGS for modeling purposes [4].

3.2.2. Using Real Images or Real Data

Use of real images requires more constraints than merely careful handling of
imprecision in the Fourier transform, these types of images require proper centering to
provide fair statistics, band-limiting to avoid aliasing, and down-sampling / up-sampling
to meet sampling requirements. Centering typically requires use of an existing algorithm,
such as the centroid, to adapt the image with either Fourier, or sinc, interpolation or
another robust method such as bi-cubic or cubic-spline interpolation. Although sinc

interpolation is ideal, this simulation uses MATLAB’s cubic-spline interpolation for this
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step in modeling to prevent additional unnecessary information appearing in the black
background needed for down-sampling and band-limiting operations of the image.

An important parameter that drives modeling is the pixel size relative to the actual
size of the simulated object as defined by Equations 2 and 3. This modeling investigation
seeks to use the Hubble satellite for large apertures on the order of one meter and
subsequently a pixel size representing 20 cm [20]. Also of interest is a similar wave-
front sensing problem in which the aperture reduces to 10 cm, forcing a corresponding
change in pixel size to two meters. This pixel size determines the appropriate light-level

for tracking or wave-front sensing for a real object as summarized in Equation 6 [4].

(DJZ

72' N

AL

C:Psun'n.Aixel' Sensor_, 2 Al‘LRB (6)
g Aﬂ’Visible Tz hV

LS}

where
Apivet = Area that a Pixel Represents on Object (mz/pixel)
D = Diameter of the Aperture Opening (m)
n = Number of Pixels in Array (pixels)
Py, = Power of Sun at Earth’s Surface = 1000 (W/mz) [4]
AJ = Bandwidth of Light (Sensor = 0.05x107, Visible = 0.5x10°) (m) [5]
z = Distance to the Object ~ 600x10° (m) [20]
At = Integration time of Imaging Device =~ 100x10°° (s) [5]
h = Planck’s Constant ~ 6.626x10™* (J s) [18]
v = Frequency of Light ~ 6x10'* (Hz) [18]
R = Reflectance = 5 to 20 (%) [18]

B = Light allocated by Beam-Splitter ~ 10 (for WFS) (%) [5]
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This equation involves several variables including the ratio of the aperture and distance
to the object, integration time, photon energy, reflectance, and amount of light sent to the
sensor, most of which are constant [4]. This formula sets the light-level values seen in
Table 3 for the extended object scenario, and illustrates the light levels observed when
viewing the Hubble space satellite. However, even with correct light-level calculations, a
poor orientation of the image may result in low contrast for a particular dimension and a
simple rotation of the image will alleviate a reduction in performance for all models.

To avoid aliasing while down-sampling, convolution in space with a sinc
function, or multiplication by a two-dimensional rect function in frequency representing
an ideal low-pass filter, removes high frequencies beyond the down-sampled image’s
bandwidth. If filtering did not occur, higher frequencies would alias to lower
frequencies, corrupting the image in the spatial domain; this aliasing is a type of image
corruption that up-sampling does not suffer. Down-sampling is straightforward for
Nyquist sampled cases; however, other images, other samplings, or up-sampling requires
sub-pixel information provided by an interpolator, and for speed in modeling this step
uses MATLAB?’s bi-cubic interpolation after filtering.

The optical transfer function of a telescope further band-limits the image
representing light passage through the particular optic in use and allowing for proper
diffraction limiting effects caused by a fixed aperture. Using a standard diffraction
limited OTF, with the factor to over-sample adjusting the aperture diameter directly, the
impulse response, or magnitude-squared of the Fourier transform, is the point spread
function, which is a two-dimensional Bessel function, or a perfect natural guide star [8].

Convolution of the image and PSF, or spatial frequency multiplication of the Fourier
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transform of the image and OTF, provides a properly band-limited image with the
characteristics of the current aperture appropriately included. Throughout the down-
sampling and band-limiting processes to create an image without noise for simulation, all
real and complex data from the Fourier transforms passes through every step to limit
errors due to imprecision in the Fourier transform. The images for wave-front sensing

and tracking are visible in Figures 12 through 15.

Hubble for WFS Hubble for WFS

P . xProjection
s T Projection

‘-'il
Sy,
g
T

Pixel Intensity {photons}
Position {pixels}

-15 -10 -5 0 5 10 15

Position {pixels} Position {pixels} Position {pixels}

Figure 12. Hubble for Wave-Front Sensing Figure 13. Observed Image of Hubble for
& Projections in x and y Planes Wave-Front Sensing without Noise

Hubble for Tracking Hubble for Tracking

Pixel Intensity {photons}
Position {pixels}
o

10

15

-15 -10 -5 0 5 10 15

Position {pixels} Position {pixels} Position {pixels}

Figure 14. Hubble for Tracking and Figure 15. Observed Image of Hubble for
Projections in x and y Planes Tracking without Noise
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It is important to note that unless the ideal low-pass filter is the same or larger size of an
up-sampled PSF, or zero-padded OTF, by the amount of down-sampling required, there
are minor errors near the edge of the original down-sampled image, which is acceptable
as long as the errors are outside of the window of interest used for simulation.

3.2.3. Image Projection / Vectorization

A projection of an image is purely the summation of an image in one dimension
creating a vector representation of the image; and furthermore, this projection occurs
after any cropping of the original image to maintain appropriate light-levels [5]. From a
hardware viewpoint, this greatly increases the speed of image readout, which is the main
limiting factor in the speed of closed-loop operation; unfortunately, this decreases the
light-level by one-half as discussed in Sub-Section 3.5.2 [5].

Unrelated to noise statistics, an image projection implies independence between
the two dimensions of an image, which is true for operations limited to projections of the
entire image in a constant background as seen below in Theorem 1. To extend the
applicability of this theorem, not only images wholly contained in a constant background
but also images in a relatively low background with minor fluctuations exhibit
dimensional independence; however, extended objects do not have dimensional
independence as new information enters and exits the scene. Although this implies a
requirement for joint estimation, the modeling here assumes dimensional independence

as this is theoretically sufficient for simulation in a closed-loop environment [5].
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Theorem 1
A projected image is independent with respect to the shift parameter in the

orthogonal dimension as indicated by this formula:

i(x-pB,)= Ti(x—ﬂx,y—ﬂy)dy

where
i = Representation of 2-D Image (photons)
x, y = Pixel Locations in the Image (pixels, € Integers)
B B, = Shift in x or y direction (pixels, € Reals)
Proof

This first equation defines the starting point by demonstrating the two-dimensional

inverse Fourier transform of an image with shifts in the x and y directions [11].

o) | [l b mn iy g
1 =2-D Fourier Transform of Image
Ju f» = Locations in Frequency Domain (frequency, € Integers)
Next is to integrate in the y dimension to produce a projection in the x dimension.

]‘ii(x — ,Bx’y _ﬂy )dy — T ]2 ]g](f;c,f;)e_jzﬁ(ﬂ“fﬁﬁyf‘b)ejzﬁ(fxxﬁ\’y)dfvdf;dy

—00 o0

Separation of variables yields a smaller function integrated with respect to y.

'Ti(x BB, iy = T T iy, 7, )e—jzfr(ﬂxmﬂyf; )27 T " dydf df,

—00 —00—00 —0

The integral on the right-hand-side equals a delta function.
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Applying the sifting property of the delta function, this selects f; = 0 in the integral.

Ti(x =By =P, )dy = T](fr’())e_ﬂ”ﬂxf;eﬂzy‘;xdf;

—00

Since the right-hand-side is simply the inverse one-dimensional Fourier transform in the
f direction with no dependence on the shift in the y direction, shifts in each dimension
are indeed independent, which the two-dimensional Gaussian demonstrates further as its
one-dimensional projection is simply a one-dimensional Gaussian.

Q.ED.

3.3. Image Shifting

3.3.1. Shifting of a Known Function

The requirements for shifting a known function restrict modeling only to the point
of requiring a shift of the function itself, which for a Gaussian is changing the mean of
the function. By including the requirement of a continuous function, sub-pixel shifts,
which are necessary to determine the true statistics of the model, are also straightforward.

3.3.2. FFT /Sinc-Interpolation

For images not generated from a smooth function, modeling requires another
method for sub-pixel shifts, and the best method for sub-pixel shifting without knowledge
of a function is through interpolation, and for small images sinc interpolation is the ideal
method for accuracy. A good solution for implementing sinc interpolation is using the

Fourier transform and the relationship between shifts in the spatial domain and phase
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shifts in the spatial frequency domain, as found in almost any discrete-time Fourier
transform pair table, assuming circular shifts are acceptable or use of appropriate zero
padding avoids circular shifting [11].

3.3.3. Sub-Pixel Shift Step Size

Although simulation step size typically determines smoothness of results, this
modeling method requires different step sizes to illustrate different statistics representing
the performance of the models appropriately. As a rule of thumb, the sub-pixel step size
should be one-quarter to one-tenth the pixel size as a minimum for smooth results and no
smaller than the interpolation search size used by the search algorithms and set by the
CRLB. Any smaller simulation step size would provide no further insight beyond
quantization error for bias calculations and no insight beyond noise error as indicated by
the CRLB for noise calculations.

3.4. Calculating Bias and Mean Absolute Bias (MAB)

The error in the presence of no noise is difficult to remove and indicates the best
possible operating characteristics of a sensor as well as the level of tuning required by the
operator to achieve desirable statistics. To calculate bias, subtract the true shift value
from the estimated shift value as indicated in Equation 7; however, bias can be deceiving,

therefore it is better to compute absolute bias for comparison purposes.

AbsolueBias = ‘ ,3‘ NoNoise ﬂ‘ (7

where
AbsoluteBias = The Absolute Value of the Error in No Noise (pixels, € Positive Reals)
Binvonoise = The Estimated Shift Value without Noise (pixels, € Reals)

S = The True Shift Value (pixels, € Reals)
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To reduce the complexity of results, averaging the x and y dimensions is acceptable as
long as there is independence between these dimensions, otherwise unexpected results
may surface. The bias should hold some similar properties to the image, in that if the
image is symmetric the bias should be also, and if the image is higher contrast, the bias
should indicate a relatively larger change in some areas of the curve if such a change is
visible in the search window.

The average bias over a given number of pixels is the mean absolute bias (MAB)
and provides a single number to describe operation of the sensor for a given region of the
window. Regions of interest for the above images include an average over plus-or-minus
four waves of tilt as this encompasses the entire window, and plus-or-minus one-half
wave of tilt as this represents well over fifty percent of tilts seen in a closed loop system
for reasonable values of D/rj as discussed previously in Sub-Section 3.1.3.

3.5. Noise Generation

3.5.1. Poisson and Bernoulli Random Variables

The statistics for light are intuitive from the packet perspective of light as each
photon interacts with objects such as a beam splitter or charge couple device (CCD) as a
Bernoulli random variable with a low rate of success. One way to approximate a Poisson
random variable is to sum many Bernoulli trials, each with a low rate of success, hence,
the overall statistics of light being approximately Poisson in nature [9]. Equation 8 is the
general form of a Poisson random variable, and is the basis of the statistics required for
modeling of noise for tracking and wave-front sensing. The expectation and variance
statistics for Poisson random variables indicate how the SNR increases as the light

intensity increases. Since the variance increases at the same rate as the mean, the
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standard deviation increases as the square-root of the mean, increasing the SNR in an
initially logarithmic, and then nearly linear fashion as indicated by Figure 16. Over-
sampling decreases the SNR on a per-pixel basis as the light splits between more pixels
decreasing the available light per pixel. Since light-level also dictates the quality of a
captured image, the lowest SNR possible for a wave-front sensor to operate properly is

the ideal operating light-level and what this modeling attempts to parameterize.

i(x -By=p, )d(w) o prp)

Pl e=By=8)1 8.8, )==—=57—5

(8)

where
d = The Observed Intensity (photons, € Integers)
i = The True Image Intensities (photons, € Reals)
x, y = Pixel Locations in the Image (pixels, € Integers)
B By = Shift in x or y direction (pixels, € Reals)
E[d] =i The True Image Intensity is the Mean (photons, € Reals)

VAR/[d] =i The True Image Intensity is the Variance (photons®, € Positive Reals)

SNR v Light-Level

= = [} [ w
o (3] o [43] o
T T T T T

Signal to Noise Ratio {unitless}

[43]
T

(=}

0 200 400 600 800 1000
Light-Level {photons}

Figure 16. SNR v Light-Level
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3.5.2. Effects of Projecting Images

With the exception of the Shack-Hartmann sensor model, all sensor models use
vector, or projection, images, which cause some interesting effects for the noise statistics
to compare properly between different sensors. Building on the assumption that each
pixel is independent, one can show that the sum of Poisson random variables is a new
Poisson random variable, with the new mean and variance being the sum of all means,
using either the probability generating function, as shown in Theorem 2, or indirect

convolution and knowledge of Taylor series expansions for an exponential.

Theorem 2
The summation of Poisson random variables, or convolution of probability mass
functions, is another Poisson random variable with the new rate being the sum of the

rates of the summed random variables:

Y d(x,y) - pld() i(x-8,)1 8,))= p[Zd(x,yN (Zi(x—ﬂx,y -5, ﬂxaﬂyD
y y y
Proof
This first equation is merely the probability generating function redefined for the Poisson

random variable used in this modeling and simulation [9]; note, Equation 8 defines all

parameters except for z which is the transform variable.
Gy (2) = PP

Since a summation of random variables is really a convolution, this becomes a product in

the z-domain as indicated below.
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HGd(x,y)(Z) = Hei(x—ﬂx,y—ﬂy Xz-1)
y

y
Now using exponential properties, the product becomes a summation in the exponent,

and factoring out the (z-1) term puts the solution back into the original form.

[Zi(x—ﬁx,y—ﬂy )](2_1)

¥

HGd(x,y)(Z) =e
y

This summation indicates the new rate, mean, and variance are simply the sum of
intensities from the original image, providing an easy method of computing statistics for
projected image data.

Q.E.D.

In addition to keeping the Poisson statistical nature for a projected image the light level
decreases by half, which necessarily decreases the SNR as defined in the previous sub-
section. By modeling two separate images at half intensity, including noise, then
producing projection images for two-dimensions as well as summing both images
together to form one, all sensors receive the same noise statistics while some operate on
image projections and others operate on a complete image. This allows for accurate
computation and comparison of statistics for simulation and development purposes.

3.5.3. Computing Noise Statistics

There are three main statistics for comparison between sensors when computing
with noisy data; however, they are not unique and only two of them are useful to the
developer and end user. The first two statistics are nearly the same, as one is simply the

square of the other before averaging: mean absolute error (MAE) and mean square error

40

www.manaraa.com



(MSE). To avoid confusion, the MSE used for modeling is the average square error and
not the estimation technique familiar to researchers using signal processing estimation
methods. To compute these statistics, refer to Equations 9 and 10, understanding that in a
similar manner to MAB these statistics are clearer when averaged over a range of shift

values such as one-half wave of tilt or four waves of tilt.

Z ‘ﬁ\Noise - ﬂ‘
MAE — Trials (9)
N
where
MAE = Mean Absolute Error (pixels, € Reals)
,l@‘ voise — T'he Estimated Shift Value in Noise (pixels, € Reals)
S = The True Shift Value (pixels, € Reals)
N = The Number of Trials (unitless, Preferred to be a Power of 2)
Z (ﬁ\Noise - ﬂ)z
MSE — Trials (10)
N
where

MSE = Mean Square Error (pixels’, € Positive Reals)
Of the two statistics, MSE captures a broader view as it is a middle ground or
combination of the MAB and VAR, as indicated by Equation 11, and is useful to see

which of the two statistics drives the resulting performance of the sensor [19].

MSE =~ VAR + (Bias )’ (11)
where

VAR = Variance (pixels®, € Positive Reals)

Bias = Absolute Bias as Defined in Equation 7 (pixels, € Positive Reals)
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Variance (VAR) as established in Equation 12 appears nearly the same as MSE
with two significant differences: 1) the sample mean is the subtrahend rather than the
true shift value, and 2) the divisor after summing the sample is one less than the total
number of trials making it an unbiased estimate of the variance. As a second order
statistic, VAR indicates how well a sensor can perform for a given noisy environment,

and 1s impossible to remove without changing the type of estimation or optical setup.

A 2
Z ﬁ\Noise

Z IB __ Trials
| Noise
Trials| N

VAR = 12
Y| (12)

Although only qualitative bounds are available for average bias and error, it is possible to
provide an analytical bound for variance that defines the efficiency of an algorithm’s
ability to reject noise in various conditions. With the proper background and modeling
capabilities, this Cramer-Rao lower bound can provide insight into development of an
algorithm to improve tracking and wave-front sensing, while verifying simulation and
experimental results.
3.6. Summary

Accurate modeling not only guides research to feasible solutions but also
provides a method to verify research results before actual implementation. For this
research effort, generation of images and the noise statistics that surround them is the key

to better understanding and estimation of wave-front parameters and tracking shifts.
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IV. Analysis

Investigation in wave-front sensing requires thorough knowledge of the current
estimation techniques, environmental parameters, and modeling practices to provide
guidance, insight, and validation capabilities for research. The key areas for
investigation for this research include bounds on variance to quantify performance for
any wave-front sensor, search algorithm optimization for the maximum-likelihood wave-
front sensor to meet or exceed timing requirements, and an implementation proposal with
hardware realization of the sensor algorithm to demonstrate feasibility of this
implementation. Theory can provide excellent guidance for algorithm development and
hardware implementation if applied correctly, as this research attempts to do; and the
proper use of theoretical results can significantly shorten development time compared to
trail and error analysis.

4.1. Cramer-Rao Lower Bound (CRLB) for Tilt Estimates Obtained with LGS

4.1.1. Relevant Statistics, Assumptions, and Setup

As the CRLB is a bound on variance, it requires statistical background and noise
information given a particular type of data and a proper foundation to provide meaningful
information. The basis of analysis resides with Equation 8 in Chapter III and the
assumption of a form of the laser guide star for the image as a two-dimensional Gaussian

represented by Equation 5; repeating both equations below provides clarity.
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) )
lale ) s~y o )= T2 e fyfy)d el )
where
d = The Observed Intensity (photons, € Integers)
i = The True Image Intensities (photons, € Reals)
x, ¥ = Pixel Locations in the Image (pixels, € Integers)
B By = Shift in x or y direction (pixels, € Reals)
(2452
i(x,y) = C(27z02 )_1 e 2 (5)
where
i = Representation of 2-D Gaussian Image (photons)
x, y = Pixel Locations in the Image (pixels, € Integers)
C = Total Intensity of Image (photons)
o = Standard Deviation (pixels, € Positive Reals)
Assuming o = o, = 0, and the Two Dimensions are Independent
Assuming that the dimensions are independent, using the fact that the sum of Poisson
random variables is another Poisson random variable, and using the image projection
technique to remove one of the dimensions, Equations 8 and 5 become marginal with
respect to x in Equations 13 and 14 below.
: L= s
P (= pIIB )= 0y —¢ (13)
i(x)=C (27[032 )fé e ;2 (14)
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Assuming the pixels for a projected image are independent this results in the joint
probability mass function (PMF) representing the joint a priori density function in

Equation 15.

NCCICATEE et R 15
The random variables in this equation are the shift represented by B« and two unwanted
parameters C and o;, which are part of the assumed image form. However, this equation
does not account for windowing of either the data or initial image as the information
captured is finite in size, and the proposed maximum-likelihood sensor requires further
windowing to search over shifts and to prevent detrimental effects from new data
entering the scene [5]. To limit the product properly, a windowing function on both the
true image as well as the captured image simply bounds the limits for the product
function, and completes the probability information required to derive the CRLB for an
unbiased estimator.

4.1.2. Derivation

As noted previously, estimation of the shift parameter is the goal; however, two
additional parameters require estimation as well and therefore a joint estimation approach
of these parameters and the CRLB serves as an accurate lower bound for Gaussian
images. To derive a CRLB requires computation of the elements that compose the Fisher

Information Matrix as defined in Equation 16, where the diagonal elements of the inverse

of this matrix are the CRLB for the respective parameters in Equation 17 [19].
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N [82lnpja(l§|2)] 16
! 04,04,
where
J = Elements of the Fisher Information Matrix
D = the Entire Vector d(x)
A = the Parameters to Estimate By, i, C)
j >J! (17)
where

J = The Fisher Information Matrix
As this equation calls for the log of the joint likelihood, Equation 18 illustrates the log of

Equation 15, with further simplifications.

gln<p<d<x>|<f< zlr{ e )

= ;(d(x)ln(i(x - B.)-In(d(x))-i(x-5.)) (18)

To reflect the additional unwanted parameters, Equation 19 includes 6; and C as

additional givens in the log-likelihood, where the true image conditioned on these

parameters represent the vector A in the Fisher Information Matrix and the observed

data represents D.
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An assumption that windowing equation 19 does not change the derivative allows
computation of partials without knowing the derivative of the window function; however,
this assumption is only a close approximation when the observed image’s intensity
decreases to zero at the edge of the window making the CRLB applicable for images with
a large black background or zero-shift estimation. This is the best-case operation of a
sensor, and still provides an accurate lower bound for performance of estimation
techniques. As the partial derivatives, logarithm, and partial derivatives of the log of the
Gaussian image form appear several times in the next derivation, Equations 20 through

26 summarize these results based on Equation 14.

i) =il )2 @)
%i(x—ﬂx) - i(x—ﬂx)[%—a%] - i(x—ﬂx)(x_ﬁ;_?j ~oi 21
Zilx-p) =il ) 22)
In(i(x—B,)) = ln(C(27z'ai2 )‘% ] - % (23)
2. =2 @
Ze-p) L L tf ol @
nli(x-p.) = @9
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Leveraging the information in Equations 20 through 26, the following equations compute
the first partials of the log-likelihood, which are also useful for maximum-likelihood

estimation of these parameters with the Gaussian image assumption.

%Zx:ln(p(d(x)l (i(x=5,)1 B.,0,,C))

0B, =
0 0 N 9
- 32l )5 waten)- 5,
-y d(x)(";fx)—i(x—ﬂx)(x;f ")J 27)

:Z d(x)(x_ﬂxy_o-iz _i(x_ﬁx)(x_ﬂxy_o-in (28)
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- ;(d(x)é ~i(x- B, )lj (29)

C

Unfortunately, the Fisher Information Matrix requires the second partials with respect to
all estimated parameters; therefore, it is a square matrix and the elements of the matrix
should be symmetric about the diagonal as the order of the partial derivatives should be

reversible.

82

;m(p(d(xﬂ (i((x-B,)IB,.0,.C)))

op;

(30)
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Z[ L= AR (E 3(0ﬂ)ﬁ a
52%2 (p(d(x)|(i(x = B.)1 $..0,-C))

23 L)

5[ 2 {0t 2 -2

i Z(_ e-p) gt e )J (32)
aj;ﬂxg (p(d(x)| (ilx = £.)1 B..0,.C))
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2 2 2
Substituting U (8, )= (x5 ;)3 % _ (x O_'fx) -—

:Z( % ( d(x)l](ﬂx))_(y(ﬂx)ixi(x—ﬁx)+i(X—ﬂx)ixU(ﬂx))]

And Computing iU(,Bx)= 0 (x_gx)z_ 0 1 _ 2-8)

op op. o, 0B, o, of

5[ e, ((»c—gx)z £)<x—5x>z<x53ﬂx>JJ

O;

I BRE LY ANIPS (Lo ALY N 2@—&)}]

3 x 5

-y _d(x)—z(x_f )i p | BB —3("_f )D (33)

80‘i o 0-1'3
5| 0 =B -el) o ,\=B) -0F
- ;(a_o_l[d(xl 0_1'3 J an (Z(X le} O-,~3

2 2 2
Substituting U(c,) (x=p.) - =(x_'?x) 1

3
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(‘x—ﬂx)z _O-ZZJ (37)
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5[~ 6

Because the second partial derivatives are interchangeable in order, this will create a

symmetric Fisher Information Matrix as expected, further corroborating the results

above.
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The final step to complete the elements of the Fisher Information Matrix is to take the
negative expectation of each second partial derivative, recognizing that the only random

variable in Equation 19 is d(x), whose expectation is Equation 39.

| p)
Eld(x)]=i(x-B.)=Cl2zc?J2e > (39)
Jo— [82 lanIaZ(l_j | 2)]
04,

S (i -p)Yx-5.)

= 4 (40)
O.

1

To put the result in Equation 40 in perspective, if the parameters c; and C are given, then
the inverse of this would be the CRLB for the single parameter estimation; however, joint

estimation requires the rest of the terms as well.
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s E[d ( )2(xa_§ﬂ )} _ E[l(x - ﬂx)((x — L 3(xa_3ﬁ )m

:z(z(x—ﬂx)[(x;/f ) —(x;sﬂ )J]
Z(i(x—ﬂx)(x—ﬁx)((x—ﬂ )2 _0'12))
— o (41)

o3[ 2

O;

There are no random variables; therefore, the expectation has no effect.
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2 (42)

:—Z[E d(x) %—3()6;5 ) }E{i(’c‘ﬁ )[(x_aé )4 _S(X;“ﬂ : +?]D
=—Z[l(x—ﬂ {%_3(:? )ZJ-i(x—ﬂx)[(x;’? ) —S(x;eﬁ )2 *?B

2 ) O (43)
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There are no random variables; therefore, the expectation has no effect.

> (- M-8 -0

- (44)

S (45)

To summarize these results, Equation 46 displays the entire Fisher Information
Matrix, and as Equation 17 illustrates, each diagonal element of the inverse of this matrix
is the CRLB for the respective estimated parameters. The off-diagonal elements of the
inverse Fisher Information Matrix represent the bounds on covariance terms determining

independence, or lack of independence, between the estimated parameters.
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This matrix is too complex to take the inverse of symbolically; however, assuming
independence between parameters, as some off-diagonal elements’ anti-symmetric nature
indicates, may allow easy inversion of the diagonal elements. Figure 17 in the next sub-
section illustrates the numerically calculated results for fixed parameters. Computing
results numerically indicates two main points: for aliased images, small images, and near
the edge of a fixed window, the bound appears incorrect; and a point solution for a zero-
shift estimate appears valid for the majority of the window.

4.1.3. Simplification and Further Assumptions

It is possible to compute a zero-shift solution for the CRLB as the model is
accurate for this condition since a zero-shift produces minimal discontinuities due to
windowing in the derivative. Since the sampling of the Gaussian shape produces nearly
linear regions between each sample, the summations over the values of x emulate

integrals.
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Select the following variables for integration by parts (IBP) and pull the constants
out in front of the integral.

U=(x—p,), where dU = dx

(x-p.F “Gop )
2 20

dV=(x-p)e > dx,where V = —0ce

S\ N ~(=p.)
_ C(2ﬂ'o;i ) 2 —(x—ﬂx )0'126 207 _ J’ —O'fe 207 dx
o z

i
-0

Attempting to evaluate the integral for U V yields oo/c0; therefore, L’Hopital’s

Rule can still provide the limit as this function approaches o in both directions.

(‘x—le)O-iz _E_ﬁ
(X—ﬂ;)z B o0 e}
e 20} Y
d
Ir (x - p. )0,-2 ~ o’
-p) (x-5.)
d e =B),
dx o'l.2
o’ 3 o’ B o’ 0
(x_ﬂx)e(x;i;)z 00-00 —00-00
o’ B
1 2
_Clao?) g L
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Rearranging this result produces a constant multiplied by the integral of a

Gaussian, which is just the constant.

o ~(=p.)
= Co;iz J;((Zﬂof )%e 207 ]dx
o

i —

= (47)

~ L - -, )dxaj BB )dj

i —0

1|7 =) " | =p.)
= J;[(x - B, )3 (272'61.2 )_5 e 207 de — 0'1.2 I(x - B, )(272-63 )‘5 e 207 de
i _

(272'0' 12 )_% ° 2 7();;%)2 2 i 7()62;%)2
2L g pde (i [ g |

Selecting the following variables for IBP for the left-most integral creates a

positive two times the integral on the right after one step of IBP, which combine to

produce a single positive integral as shown below.
U=(x-pB),where dU =2(x— f3,)dx

(B, ) -(x-8.)
dv=(x—pB)e > dx,where V = —0/e
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Rather than laboriously apply L’Hopital’s Rule three times to determine the limit
of this fraction as it approaches oo in both directions, it is clear that the numerator will
eventually be a constant and the denominator will remain an exponential dependent on x,

again yielding 0 - 0.

il | e w w —w 070
e 20} .
L » “(-B.)
_ (272'0'152) 2 O'lZJ. (x—ﬂx)e 207 dx
O'l- =
oo P2 ool g 5
g,
1
= (2”25) “(o2(-0+0))
-0 (48)
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The right-hand integral is simply an integral of a constant multiplied by a
Gaussian, which is the constant, whereas the center integral is identical to J;; and
therefore equal to C 6;>. The left-hand integral requires temporarily pulling the constants

out front and integration by parts as shown below.
U=(x—p.),where dU = 3(x — g, ) dx

(B, ) -(-p. )
P 2 20}
" dx,where V = -0 e i

1

v =(x-pe *
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Again, L’Hopital’s Rule indicates the first term approaches zero; however, re-
arranging the remaining integral reveals the same form as J;;, again simplifying the

integration process by providing the answer of C o;°.

Inserting these results into the original equation yields the following:

- (cot —2c5! +o7)
o

== (50)
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The left-most integral is identical to the form found in J;;; therefore, using the

same solution and L’Hopital’s Rule calculation results in the following:

(o 0o = e s

1
Co?}

=0 (51

C2
1 1 _(x_ﬂzx )2
= F C(Z?Z'Ulz )_5 e 20; dx
~(x-p.)
1
= % (27r0'l.2 )_2 e 2% ldx
1
= 52
C (52)

Equation 53 summarizes these results for the Fisher Information Matrix indicating that
the magnitude of the true Fisher Information Matrix is less than or equal to this
approximation to provide a true lower bound and that the parameters are uncorrelated,
with the matrix inverse shown in Equation 54 providing an accurate approximation of the

CRLB for all three parameters.
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Figure 17 below indicates the match of these zero-shift solutions to the original
numerically computed CRLB from Equation 46, which verifies the theoretical results,

while Appendix A contains a Mathematica notebook to ensure every step is correct.

CRLB v Shift

—_
o

Assuming a Gaussian Image
Parameters o= 2and C =300

For an 32x Image

Dashad Lines: Zero-Shift Solution
Dot-Dashed Lines: Edge of Window

Minimum Variance {pixels 2}
=)
T

-5 0 5
The Shift B, {Mean of Image) {pixels}

Figure 17. CRLB Numerical and Analytical Solution
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Additionally, the last estimated parameter, C, directly stems from the variance of a
Poisson random variable as summing all intensities in the vector produces this as the
variance of the new Poisson random variable as described in the Section 3.5.

4.1.4. Benefits and Discussion

The above theoretical bound on variance for shift estimation has two main areas
of benefit due to the simplicity and completeness of the bound; first, the bound can guide
researchers in implementation of estimation algorithms, and second, it can guide
technicians towards reasonable light-levels and images for shift estimation. The
implementation benefits are two-fold in that estimation algorithms that search for sub-
pixel shifts need only search to the square root of the minimum variance given by the
bound as noise error overrides any quantization error in the model. The bound also
provides an analytical method to validate the sensor model and simulation results by
determining if the model is efficient in achieving the bound and providing another form
of verification for modeling by allowing comparisons to this independent bound.
4.2. Maximum Likelihood Optimized Search Algorithm

4.2.1. Relevant Statistics, Assumptions, and Setup

Leveraging the noise statistics from Chapter III and the projection of an image
exhibiting these statistics at the beginning of this chapter, the maximum-likelihood (ML)
estimator uses the joint a priori distribution as shown in Equation 15 to determine what

the estimate should be according to the criterion in Equation 55.

B =argmax [ ] pla(x)| (i(x - 5.)1 5.)) (55)
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To minimize the computational complexity of performing numerous multiplications
during a search over values of B, the same result is available from the natural log of

Equation 55 as indicated in Equation 56.

B =argmax Y In(p(d ()| (i(x - 5,) £,) (56)

This maximum-likelihood approach differs from the maximum a posteriori (MAP)
estimation approach, which seeks to maximize the likelihood over the joint a posteriori
distribution found in Equation 57 by using either Bayes’ Rule or applying the Law of

Total Probability and the criterion found in Equation 58 [5].

Lol )15t )H” ﬁx)lﬁzi)zf)()(i(x—ﬂx)lﬁx)lﬁ;) 7

By =argmax [ pli(x - )1 8,) 1 d(x). 8.) (58)

Since this technique seeks to maximize the joint a posteriori distribution for a given
value of B, the marginal with respect to the observed image is unnecessary, while using
the log of the a posteriori distribution and expanding further simplifies the search as

indicated by Equation 59.

By = argmax ¥ In(p(d (x)| (i(x Zln( ((-p)18)IB) (59

In the case that the right-hand term, or the prior probability of Bx given the previous shift,
is uniform, the dependence on the prior withdraws causing the MAP and ML estimates to
become equal. As mentioned in the chapter on modeling, this prior distribution is

Gaussian in nature; however, the parameters required for this distribution are not
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available leaving the choice of assuming a uniform distribution, as previously performed
in literature [4, 5].

The expansion of Equation 56 yields the log-likelihood for implementation and
the first part of the MAP estimator, should the prior information become available, as

specified by Equation 60.

B, =argmax z In y, (x)!
= arg max z (ln(i(x - B. )d(x) )+ ln(e_i(x_ﬂ 2 )— In(d (x)'))

= argmax ) (d(x)In(i(x — 5, ))~i(x ~ B, )~ In(d(x}))
Since the final term does not depend on B, the term drops out.

=argmax ) (d(x)in(ilx - )~ ix~ 5.) (60)

Ideally, the most efficient method for obtaining the shift estimate is through
taking the derivative of the above function, setting it to zero, solving for the nodes of the
function, and determining which node has the largest peak. It may be possible to derive a
closed-form solution for the derivative of the log-likelihood provided the derivative of
the original image i(x-f,) also has a closed form solution, which is both image and shift
specific. This typically is not possible; however, leveraging the unique properties of the
Fourier Transform and the interchangeability of derivatives and integrals with additional
assumptions may provide such a closed form solution for faster estimation.

There are numerous alternative approaches to searching the log-likelihood

including using a known function for the true image to allow use of all of the data in the
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log-likelihood calculation. Although a known function could preclude the need to
window the data, simply adjusting the algorithm to accommodate both a fixed true image
size and a dynamic true image size allows a greater search area for smaller image sizes
and possibly better performance without modification to most software or hardware. An
additional assumption when working with actual data is regarding which projected image
to shift for searching over different search estimates, as it is possible to shift either the
true image or the observed data. Theory indicates that the random parameter is in the
original image, and therefore shifting of the true image is appropriate; however, it may be
interesting to characterize the noise rejection capabilities of shifting the observed data
also, as hardware interpolation is possible for this sub-pixel shift technique. This
research focuses on implementing a maximum-likelihood search approach using the joint
log-likelihood defined by Equation 60 in an efficient manner to temporally compete with
the Shack-Hartmann and SWAT wave-front sensors, as current research indicates a
statistical performance improvement with the ML sensor for extended objects [5].

4.2.2. Properties of Log-Likelihood Leveraged

As observed from computing sample log-likelihoods using the modeling
techniques in Chapter III, there are several properties of the log-likelihood curve that
lend themselves to an optimized search algorithm. Figure 18 and Figure 19 illustrate the
log-likelihood curve for the laser guide star as described in the modeling chapter. The
most important attributes include the large main node, significantly smaller nodes and
distortion due to noise, and mild peaks at the end-points indicating performance in a

constant background.
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Figure 18. Log-Likelihood for Gaussianin ~ Figure 19. Log-Likelihood for Shifted
Noise Gaussian in Background and Noise

The peak of the main node is the estimate, and a search algorithm that rejects the noise
and other characteristics of the log-likelihood could search in an efficient manner using
the concave-down properties of the main node. The peaks at the edge of the log-
likelihood window develop when the black background of the true image covers greater
than one-half of the search window making it more likely that the object has moved
completely out of view. These end-point peaks have the unique characteristic of being
slightly greater on the side of the log-likelihood curve that contains the main node for a
significant shift, also lending possible simplification to the search algorithm.

4.2.3. Search Algorithm Definition

The goal of this search algorithm is to perform an efficient search of the concave-
down portion of the main node of the log-likelihood, while being robust enough to reject
interference from noise and other artifacts in the search window. A method that skips the
noise and artifacts by quickly finding the main node before performing finely stepped

search operations effectively meets these requirements and provides a robust solution for
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the search algorithm. By pre-computing the interpolated true image and its logarithm,
each sensor can use this data without wasting more computations allowing the optimized
algorithm to focus on searching the log-likelihood and ignoring the requirements of the
input data. The implemented search algorithm has two phases; the first grid search is
optional depending on the shape of the log-likelihood and the second implements an
optimal search algorithm requiring minimal memory storage for a known concave down
function as indicated by the program flow in Figure 20.

There are two different ways to describe the main search algorithm using modern
search techniques; the first method stems from the Gradient Decent algorithm, while the
second method builds upon the algorithmic concept of a Binary Search Tree. From the
Gradient Decent perspective, which is the basis for development, this algorithm performs
Gradient Ascent by climbing the log-likelihood curve, where the step size and slope
determinations are the unique and key components of the algorithm. The step size uses
Bisection to determine the next point in the search, as it is easy to compute this
dynamically changing step size and reduces the complexity of the search significantly.
The slope determination ensures locating the peak by determining which direction to
climb when encountering a larger log-likelihood value with version 2 of the Select
Window Endpoints block choosing the new search region. The algorithm properly
assumes that the slope is toward the current largest value if the new log-likelihood of the
computed point is less than the current maximum and performs endpoint detection using

version 3 of the Select Window Endpoints block.
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Figure 20. Flow Diagram of Optimized Log-Likelihood Search Algorithm
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This slope determination allows the search to narrow the search region for the peak
quickly and completes the Gradient Decent algorithm. From the perspective of dividing
the problem into search regions, another view of the algorithm emerges in the form of a
Binary Search Tree, with the first node being the entire search window, this node’s
children being the left and right halves of the search window, and continuing until only
individual elements are the leaves of the tree. As the search progresses the algorithm
makes a decision at each node to guide which children to select and proceeds with a
depth-first search of the entire tree; and since these decisions are final, upon reaching a
leaf, the index of the leaf is the result of the search algorithm. This search algorithm has
the added advantage that it requires memory for only three index values, log-likelithood
values, and their attributes making it very feasible for implementation in a compact
embedded architecture for fast operation.

The optional grid search allows the algorithm to proceed given the main node of
the log-likelihood cannot be found within the first three computations o